PBL

Application of Biochemistry in dental prctice

Talib A. Najjar , DMD, MDS, PhD Professor Oral & Maxillofacial Surgery Rutgers University

Oral & Systemic Diseases

Periodontal disease Jaw Bone Necrosis due to Bisphosphonate

Paget`s Disease Osteoporosis

pathogenesis of Patient Condition

presented with:

Osteonecrosis of the jav bone due to Bisphosphonate

Patient's Data

 54 year old male presented with sever periodontal disease ,type
 2 diabetes ,lung cancer treated with Bisphosphonate

Progress of Dental Treatment

Patient referred to his Dentist for oral evaluation during cancer therapy.

- Dentist referred him to Periodontist to evaluate periodontal condition.
- Periodontist referred him to Oral Surgeon. Oral Surgeon performed for full mouth extractions due to sever periodontal condition.

This leads to sever **Osteonecrosis** of the maxillary and mandibular alveolar ridges

Biochemistry Knowledge Provide Better Understanding of this patient

Osteonecrosis of jaw bone due to **Bisphosphonate**

Why Bisphosphonate causes such a sever Osteonecrosis & Why it was used ?

Why Bisphosphonate was given to this patient ?

 Bisphosphonate (Aredia or Zometa[®]) are used to control

Bone metastases from lung cancer

Hypercalcemia due to bone metastasis

Common uses of Bisphosphonate

Oral Forms	• Prevention and treatment of osteoporosis in
	postmenopausal women
	Increase bone mass in men with osteoporosis
	Glucocorticoid-induced osteoporosis
	Paget's disease of bone
	osteogenesis imperfecta

Intra- venous Forms	•Hypercalcemia of malignancy
	Bone metastases of solid tumors
	• Breast and prostate carcinoma; other solid tumors
	Osteolytic lesions of multiple myeloma

Relative Potency & Effect of

Bisphosphonates

 Etidronate (Didronel) 	1
 Tiludronate (Skelide) 	10
 Pamidronate (Aredia) 	100
 Alendronate (Fosamax) 	1,000
 Risedronate (Actonel) 	10,000
 Ibandronate (Boniva) 	10,000
 Zolendronic acid (Zometa) 	>100,000

US Surgeon General Report recommends a pyramidal approach to osteoporosis treatment

Osteoporosis & Fracture Risk

TENSTEIN

Paget's Disease

Paget's Diseases

- Characterizes by increased bone mass & density
- Abnormal bone remodeling
- Enlarged head and jaw bones
- Patient frequently change hat ,eyeglasses and dentures
- Cotton-wool appearance in the radiograph
- Loss of sight and hearing
- High Alkaline Phosphatase

Bisphosphonate therapy for Page TOTAL ALK-P MONTHS

•Rendina et al. NEJM 353:24, 2005

Basic Chemical Composition

Bisphosphonate

- Pyrophosphate compound Essential for normal cellular functioning as it incorporate in ATP
- Substitution of Carbon for Oxygen

Resistance to hydrolysis Bone matrix accumulation Extremely long half-life

Nitrogen-containing side chain

Increases potency, toxicity Direct link to BIONJ cases

Chemical Structure

Pyrophosphate (PPi) (ATP = AMP + PPi) Bisphosphonate (P-C-P)

Bisphosphonate Structure

Non Nitrogen Side Chain Etidronate (Didronel) Clondronate (Bonefos) Tiludronate (Skelid)

Bisphosphonate Structure

Understanding Pathogenesis of Bone Necrosis

Understanding the pathophysiology of Bone

Remodeling

Bone remodeling as Tissue

Organ & System

Tissue

Haversian (osteons) which are aligned to withstand biofunctional challenges

Organ Mandible Tibia

System

Interacate with endocrine, renal ,vascular & GI systems

Understanding Pathogenesis of Bone Necrosis

Biochemistry of Bisphosphona

Inhibition of farnesyl diphosphate synthase in the osteoclasts

Metabolized to toxic analogue of ATP (non-nitrogen containing Bisphosphonate) **Bisphosphonate Causes The Following**

- 1. Disruption of normal bone turnover
- 2. Compromised bone blood flow
- 3. Antiangiogenic
- 4. Mucosal toxicity
- 5. Local Envierments of the Oral Cavity

Bisphosphonate

Pharmacokinetics

- Rapid accumulation in sit
- of increased bone depos
- Not metabolized (nitroge

Repeated doses accumulate in bone

Bone ½ life of "years" – maybe a lifetime.. Removed only by osteoclast-mediated resorption

"Biologic Catch 22"

Bone resorption

Bone formation

Normal Bone Remodelling

Cellular Mechanismoste Clastiactively reabsorbs

bone matrix

- 2. BISPHOSPHONATE (*) binds to bone mineral surface
- 3. BISPHOSPHONATE is taken up by the osteoclast
- 4. Osteoclast is inactivated
- 5. Osteoclast becomes apoptotic ('suicidal') and dies

Biologic Action of Bisphosphonates

Osteoclastic toxicity

Apoptosis Inhibited release of bone induction proteins

BMP, ILG1, ILG2

Reduced bone turnover, resorption Reduced serum calcium*

Hypermineralization

"sclerotic" changes in lamina dura of alveolar bone

Bisphosphonates Effects on Osteoclasts

Bisphosphonate attaches to exposed bone mineral surfaces

Osteoclast takes up bisphosphonate → loss of ruffled border, inactivation, detachment New bone formation by osteoblasts renders bisphosphonate inert, inaccessible

Osteoclast precursors

Osteoclast

Osteoblast

1. Sato M et al. *J Clin Invest.* 1991;88:2095–2105. 2. Rodan G et al. *Curr Med Res Opin.* 2004;20:1291–1300.

contributes to his sever

osteonecrosis?

- Does hyperglycemia (increased blood sugar) alone influenced his osteonecrosis ?
- Does abnormal metabolic changes in the glucose and ultimately protein and lipid metabolisms influenced his osteonecrosis ?

Conclusion

In this patient the combination of hyperglycemia, ketoacidosis, Steroid, Bisphosphonate, chemotherapy and his lung cancer resulted in reduce blood supply, impaired tissue function and reduced vascularity which resulted in sever periodontal disease. **Osteonecrosis subsequent to teeth** extractions were due to IV bisphosphonate use.