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This review describes the key discoveries over the last 15 years that have led to a clearer understanding of the
molecular mechanisms by which bisphosphonate drugs inhibit bone resorption. Once released from bone
mineral surfaces during bone resorption, these agents accumulate intracellularly in osteoclasts. Simple
bisphosphonates such as clodronate are incorporated into non-hydrolysable analogues of adenosine
triphosphate, which induce osteoclast apoptosis. The considerably more potent nitrogen-containing
bisphosphonates are not metabolised but potently inhibit farnesyl pyrophosphate (FPP) synthase, a key
enzyme of the mevalonate pathway. This prevents the synthesis of isoprenoid lipids necessary for the post-
translational prenylation of small GTPases, thereby disrupting the subcellular localisation and normal function
of these essential signalling proteins. Inhibition of FPP synthase also results in the accumulation of the
upstream metabolite isopentenyl diphosphate, which is incorporated into the toxic nucleotide metabolite
ApppI. Together, these properties explain the ability of bisphosphonate drugs to inhibit bone resorption by
disrupting osteoclast function and survival. These discoveries are also giving insights into some of the adverse
effects of bisphosphonates, such as the acute phase reaction that is triggered by inhibition of FPP synthase in
peripheral blood monocytes.
This article is part of a Special Issue entitled Bisphosphonates.
.
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Introduction

Despite being in clinical use for four decades, it is only in the last
10 years that the exact molecular mechanisms of action of bispho-
sphonates (BPs) have become clear. These agents, by virtue of their
backbone P-C-P structure and ability to chelate calcium ions, target
rapidly to bone mineral. This review describes the biochemical and
molecular actions of these drugs on osteoclasts that have ingested BPs
from the bone surface, but similar effects will occur in any cell type
capable of internalising BPs (for example, most cell types cultured in
vitro).

Skeletal targeting and intracellular uptake

The preferential uptake of BPs in the skeleton, by adsorption to
mineral surfaces in bone, brings them into close extracellular contact
with osteoclasts and probably some osteocytes [1], but prevents
prolonged exposure to most other cell types. During bone resorption
by osteoclasts, the acidic pH in the resorption lacuna causes the
dissociation of BP from the bone mineral surface, followed by
intracellular uptake of the BP (most likely as a complex with calcium
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ions) into osteoclasts by fluid-phase endocytosis [2]. Since cells other
than osteoclasts are unable to acidify the bone surface to release bone-
bound BPs, osteoclasts appear to be the only cell type capable of
internalising substantial amounts of these drugs in vivo, although it is
becoming increasingly clear that other endocytic cells such as
monocytes and macrophages may internalise BPs that are present
transiently in the circulation [3,4].

Fluorescently-labelled BPs have proved extremely useful tools to
visualize the skeletal distribution and cellular uptake of BPs in vivo, as
well as the localization of BPs in osteoclasts in intracellular endocytic
vesicles (Fig. 1), which may enter the transcytotic pathway used by
osteoclasts to release the products of bone matrix degradation [2].
Acidification of these intracellular vesicles appears to be necessary to
allow the movement of BPs from the vesicles into the cytosol [5] and
presumably then into other organelles such as peroxisomes, where
these drugs exert their biochemical effect.

Intracellular metabolism of simple BPs

A breakthrough in understanding, at the molecular level, how the
simple BPs (clodronate and etidronate) affect osteoclasts came about in
1989 through observations utilising the simplest BP, methylene bis-
phosphonate (medronate), to measure intracellular pH in Dictyostelium
slimemouldamoebae.Using 31P-NMRKlein et al. noticed thatmedronate
could be metabolically incorporated into methylene-containing
analogues of adenosine triphosphate (ATP) and diadenosine
tetraphosphate (Ap4A) [6]. The metabolite analogue of ATP ie AppCH2p,
contains the BP (P-C-P) moiety of medronate in place of the β,γ
pyrophosphate (P-O-P) moiety of ATP. As a result, AppCH2p resembles
ATP but is resistant to hydrolytic breakdown and release of phosphate.
Although this initial study only showed that medronate could be
Fig. 1. Uptake of a fluorescent BP (FL-ALN) from the surface of dentine in vitro. Rabbit
osteoclasts were cultured for 24 h on dentine slices that had been pre-coatedwith FL-ALN
(green). Cells were fixed in 4% formaldehyde, and counterstained for F-actin (red) and the
vitronectin receptor (blue) before examining by laser scanning confocal microscopy. (A) 1
micron xy section of an osteoclast (at the position denoted by the arrow in (B)), showing
abundant intracellular vesicles containing FL-ALN. (B) zx section of the same osteoclast.
Note the intense labelling of the dentine surface, in particular the resorption pit (asterisk).
The actin ring can be seen as two distinct (red) regions just above the dentine surface in
this sectional view.
metabolised, we [7,8] and others [9] soon found that clodronate and
other BPs of simple chemical structure that closely resemble PPi, such as
etidronate, could also be metabolised by Dictyostelium amoebae to
methylene-containing (AppCp-type) analogues of ATP (Fig. 2). Further-
more, the accumulation of AppCp-typemetabolites of BPswas associated
with cytotoxicity and inhibition of proliferation ofDictyostelium amoebae
[6,8–10].

Combining the relatively insensitive techniques of 31P-NMR with
analysis of cell extracts using FPLC and uv absorbance, we extended our
study from slime moulds to extracts of human cell and to murine J774
macrophages [11,12], and showed that mammalian cells could also
metabolise simple BPs to AppCp-type compounds [12,13]. The identity
of these metabolites of clodronate, etidronate and tiludronate (Fig. 2B)
was later confirmed using highly sensitiveHPLC-electrospray ionisation
tandemmass spectrometry [13,14], which allowed the detection of the
AppCp-type metabolites of BPs in small quantities of cell lysate.

The incorporation of simple BPs into nucleotide analogues appears
to be brought about by members of the family of Type II class of
aminoacyl-tRNA synthetases (Fig. 2A) [8,11], although a recent report
has suggested that other intracellular enzymes such as T4 RNA ligase
may also be capable of metabolising simple BPs [15]. In the case of
aminoacyl-tRNA synthetases, it appears that simple BPs (with short
side chains ie clodronate and etidronate but also, surprisingly,
tiludronate) resemble PPi sufficiently well to be accommodated into
the enzyme active site in place of PPi. This allows a back-reaction
involving the condensation of a BP with AMP (derived from an
aminoacyladenylate) to form an AppCp-type nucleotide. However,
the sterically bulkier N-BPs, such as alendronate, pamidronate and
ibandronate, cannot be metabolised by these enzymes and we were
unable to detect AppCp-type metabolites of N-BPs in lysates from
cultures of BP-treated cells [13].

Twelve years after the first report that medronate could be
metabolised by Dictyostelium amoebae, we confirmed (using
immunomagnetic beads to isolate osteoclasts ex vivo from rabbits)
that osteoclasts in vivo do indeed metabolise clodronate to AppCCl2p
[16]. The AppCp-type metabolites of BPs such as clodronate probably
accumulate to high concentrations (up to 1 mM; [17]) in the cytosol of
osteoclasts,macrophages,Dictyostelium amoebaeor other cell types that
can effectively internalise BPs by endocytosis. Owing to the non-
hydrolysablenature of theATPanalogues, their intracellular accumulation
is likely to inhibit numerous intracellularmetabolic enzymes, thus having
detrimental effects on cell function and inducing apoptosis [18–23]. In
accord, using liposome-encapsulated preparations, we found that
treatment of cultured osteoclasts with the clodronate metabolite
AppCCl2p inhibits bone resorption and causes osteoclast apoptosis to
the same extent as treatment with clodronate [16] (Fig. 2C).

One of the molecular pathways by which AppCp-type metabolites
of BPs can cause osteoclast apoptosis (Fig. 2C) appears to involve the
adenine nucleotide translocase (ANT), a component of the mitochon-
drial permeability transition pore. The metabolite of clodronate,
AppCCl2p, inhibits the ANT [24] and prevents translocation of ATP
across inner mitochondrial membranes. This causes initial hyper-
polarization of the inner mitochondrial membrane in osteoclasts [24],
followed by breakdown of the mitochondrial membrane potential
[25], thus causing the mitochondrial permeability transition [26],
activation of caspase-3 [25], and subsequent caspase-mediated
cleavage of Mst-1, an apoptosis-promoting kinase [27]. Studies by
Reszka and colleagues suggest that induction of osteoclast apoptosis is
the primary mechanism by which the simple BPs inhibit bone
resorption, since the ability of clodronate and etidronate to inhibit
resorption in vitro can be overcome when osteoclast apoptosis is
prevented using a caspase inhibitor [28]. Recently, we and others have
shown that RANKL and TNFα can also rescue osteoclasts from the
apoptosis-inducing effects of BPs, at least in part by inducing
expression of the anti-apoptotic Bcl2-family members Mcl-1 and
Bcl-xL. This may explain why BPs have not been as effective as



Fig. 2. (A) The formation of AppCp-type metabolites of bisphosphonates is catalysed by aminoacyl-tRNA synthetases. An amino acid condenses with ATP (Appp) to form an
aminoacyl-adenylate (amino acid-AMP), releasing pyrophosphate (pOp) in a reversible reaction (I). The aminoacyl-adenylate then condenses with a molecule of tRNA to form
aminoacyl-tRNA (reaction II). Since simple bisphosphonates (eg clodronate, pCCl2p) resemble pyrophosphate in structure, the reverse reaction of (I) can occur with pCCl2p in place
of pOp, to form an analogue of ATP (AppCCl2p) containing the bisphosphonate. (B) The structure of ATP and the AppCp-type metabolite of clodronate, etidronate and tiludronate.
(C) Clodronate treatment induces apoptosis in cultured rabbit osteoclasts. Compared to untreated osteoclasts (left), clodronate causes the appearance of rounded cells with
membrane blebbing (right), characteristic of apoptosis. Treatment with the clodronate metabolite AppCCl2p, encapsulated in liposomes, causes the same morphological changes.
Reproduced in part from Sutherland et al. [29].
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expected in some inflammatory models of bone loss in which there
are high levels of RANKL and TNFα [29,30].

Together, these studies provide convincing evidence that clodronate,
etidronate and tiludronate act as prodrugs, being converted to AppCp-
type metabolites following intracellular uptake by osteoclasts in vivo.
The accumulation of these metabolites has a cytotoxic effect on
osteoclasts, thus inhibiting bone resorption by causing osteoclast
apoptosis [22,24,25,28,29]. The targeting of BPs to bone and their
selective uptake by osteoclasts accounts for the ability of these BPs to
selectively cause apoptosis of osteoclasts, but not other bone cells in
vivo.

Nitrogen-containing BPs inhibit the mevalonate pathway

The nitrogen-containing BPs (N-BPs) pamidronate, alendronate,
ibandronate, risedronate and zoledronate are up to several orders of
magnitude more potent than the simple BPs at inhibiting bone
resorption in preclinical models, but are not metabolised to AppCp-
type nucleotides like simple BPs [13]. The first clue that led to
clarification of the mechanism of action of N-BPs appeared in 1992,
whenAmin et al. reported that, in a study to identify novel inhibitors of
cholesterol biosynthesis, the N-BPs ibandronate and incadronate
inhibited squalene synthase and possibly other enzymes of the
mevalonate (cholesterol synthesis) pathway in J774 macrophages
[31]. Pamidronate and alendronate inhibited cholesterol synthesis in
these cells but did not inhibit squalene synthase, whilst clodronate and
etidronate did not affect cholesterol synthesis [31,32]. The fact that
alendronate and pamidronate inhibited sterol biosynthesis but were
not potent inhibitors of squalene synthase suggested that these N-BPs
inhibit an enzyme further upstream in the mevalonate pathway (now
known to be farnesyl pyrophosphate synthase; see later). Further
studies were lacking until, several years later, we found that the order
of potency of N-BPs for inducing apoptosis in J774 cells matched the
order of potency for inhibiting bone resorption [33]. Even small
changes to the R2 side chain that were known to affect anti-resorptive
potency also affected the ability to cause apoptosis of J774 cells. Hence,
this macrophage cell line appeared to be an appropriate and
convenient model in which to study the mechanism of N-BP-induced

image of Fig.�2
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apoptosis. Around that time, the publication of several reports that
statins (which inhibit HMG-CoA reductase, the proximal enzyme in
themevalonate pathway) (Fig. 3) could also induce apoptosis led us to
the realisation that inhibition of this metabolic pathway could explain
the ability of N-BPs to induce apoptosis in osteoclasts and hence inhibit
bone resorption. This was supported by the close similarity between
induction of J774 macrophage apoptosis by statins and BPs; in both
cases apoptosis is dependent on protein synthesis and occurs after a
lag period of 15–24 h [34].
Inhibition of the mevalonate pathway prevents the prenylation of
essential small GTPases in osteoclasts

Theprimary functionof themevalonate pathway is theproductionof
cholesterol as well as the synthesis of isoprenoid lipids such as farnesyl
diphosphate (FPP) and geranylgeranyl diphosphate (GGPP). These
isoprenoid lipids are thebuildingblocks for theproductionof a variety of
metabolites, such as dolichol and ubiquinone [35], but are also required
for post-translational modification (prenylation) of proteins (Fig. 3).
The process of prenylation involves the transfer of the 15-carbon chain
or 20-carbon chain isoprenoid groups from FPP or GGPP, respectively,
onto a cysteine residue in characteristic carboxy-terminal motifs of
specific target proteins [36,37]. The resulting farnesylated and
geranylgeranylated proteins [38] comprise up to 2% of mammalian
proteins (the “prenylome”), predominantly small GTPase signalling
proteins but also γ subunits of heterotrimeric G proteins, phospho-
diesterase subunits, and nuclear lamins. Prenylation is required for the
correct function of these proteins, since it serves to anchor the proteins
in cell membranes, and is involved in their interactions with other
proteins suchas (in the case of small GTPases) regulatoryGAPs andGDIs
[37,39]. The correct interaction of small GTPaseswith the latter proteins
is essential for the normal regulation of small GTPase function. Since
prenylated small GTPases act as molecular switches, their activity must
be tightly controlled. Recent studies suggest that unprenylated small
GTPases, which accumulate after exposure of cells to N-BPs, accumulate
in their active (GTP-bound) state, causing inappropriate activation of
downstream signalling kinases such as p38 [40].

The process of prenylation can be followed in cultured cells by
measuring the incorporation of radiolabelled mevalonate, FPP or GGPP
into both farnesylated and geranylgeranylated proteins (Fig. 4A).
Fig. 3. Schematic diagram of the mevalonate pathway. Nitrogen-containing bispho-
sphonates (N-BPs) are potent inhibitors of FPP synthase, thereby preventing the
synthesis of FPP and GGPP required for the prenylation of proteins that are crucial for
osteoclast function and survival. Inhibition of FPP synthase also causes the
accumulation of IPP, which is incorporated into the cytotoxic metabolite ApppI. Statins
inhibit HMG-CoA reductase and therefore also prevent protein prenylation and mimic
the effect of N-BPs on osteoclasts in vitro.
Inhibition of proximal enzymes in the mevalonate pathway (for
example inhibition of HMG-CoA reductase by statins, or inhibition of
FPP synthase byN-BPs)prevents the synthesis of FPPandGGPP and thus
indirectly prevents the prenylation of small GTPases, the majority of
which are geranylgeranylated [37]. Continuing touse J774macrophages
as a model of N-BP action, we showed, in 1998, that N-BPs prevent the
incorporation of [14C]mevalonate into both farnesylated and geranyl-
geranylated proteins in intact J774 cells, whereas the simple BPs
(ie clodronate and etidronate) had no effect [13,41]. Risedronate almost
completely inhibited protein prenylation in J774 cells at a concentration
of 10−5 M, which is similar to the concentration that affects osteoclast
viability in vitro [42–44] and could be achieved within the osteoclast
resorption lacuna [45]. We and others confirmed that N-BPs (for
example, 100 μM alendronate or risedronate, or ≥10 μM zoledronate,
Figs. 4B,C) inhibit the incorporation of [14C]mevalonate into prenylated
small GTPase proteins in purified osteoclasts in vitro [46,47] and prevent
protein prenylation in osteoclasts in vivo [16,47,48]. The latter studies
measured the level of the unprenylated form of the small GTPase Rap1A
which (like other small GTPases) accumulates in cells that are starved of
FPP or GGPP, the substrates for prenylation (Fig. 4D). Fisher et al. have
presented further evidence thatN-BPs affect themevalonate pathway in
osteoclasts in vivo. Rats treated with alendronate, ibandronate or
risedronate showed suppressed levels of HMG-CoA reductase in
osteoclasts, presumably due to feedback regulation of the mevalonate
pathway [49]. However, the reduction inHMG-CoA reductase expression
is rather surprising, since SRE-mediated transcriptional upregulation of
this enzyme is known to occur when cholesterol synthesis is inhibited
[35,50].

Prenylated small GTPases such as those of the Ras, Rho, Rac, Cdc42
and Rab families are important signalling proteins that regulate a variety
of cell processes important for osteoclast function, including cytoskeletal
arrangement, membrane ruffling, trafficking of intracellular vesicles, and
apoptosis [51,52]. Inhibition of the mevalonate pathway [41], leading to
loss of prenylated proteins (and loss of downstream signalling) and/or
accumulation of unprenylated proteins (and therefore inappropriate
activation of downstream signalling pathways) (Fig. 5), could therefore
account for most, if not all, of the various effects of N-BPs on osteoclasts
that have been described. For example, loss of prenylation of Rho, Rac or
Cdc42 could lead to loss of the osteoclast ruffled border, which is absent
in osteoclasts treated with BPs in vitro or in vivo [42]. Since Rho, Rac and
Cdc42are required for cytoskeletal organisation inosteoclasts [52], loss of
prenylation of these small GTPases could also cause the loss of actin rings,
a characteristic effect of BP treatment. Rab GTPases are crucial regulators
of vesicular trafficking and several are known to be required for
osteoclast function [51,53,54]. Loss of prenylation of these proteins
would therefore likely affect formationof the ruffledborder, trafficking of
lysosomal enzymes and transcytosis of degraded bone matrix [55]. Loss
of prenylation of small GTPases such as Rac, and disruption of
downstream signalling pathways promoting cell survival, are also the
likely routes by which osteoclasts undergo apoptosis when exposed to
sufficiently high concentrations of N-BP [56]. However, unlike for the
simple BPs, induction of osteoclast apoptosis does not account for the
inhibition of bone resorption caused by N-BPs, since preventing
osteoclast apoptosis in vitro using a caspase inhibitor did not prevent
N-BPs from inhibiting bone resorption, unlike with simple BPs [28].
Furthermore, inhibition of bone resorption by N-BPs is not always
associated with signs of cell toxicity or a decrease in osteoclast number
except at high concentrations or doses [42,43]. Indeed, N-BP therapy can
lead to the formation of “giant” osteoclasts, identified histologically as
hypernucleated cells that are usually detached from the bone surface or
associatedwith superficial resorption lacunae [57,58]. These presumably
occur as a result of accumulation of functionally inactive osteoclasts, that
continue to undergo cell fusion.

The importance of prenylated proteins for osteoclast function has
been confirmed using specific inhibitors that prevent either protein
farnesylation (FTI-277, an inhibitor of farnesyl transferase) or protein

image of Fig.�3


Fig. 4. (A) Inhibition of protein prenylation in osteoclasts by nitrogen-containing bisphosphonates can be demonstrated in vitro by culturing cells with [14C]mevalonate, which
becomes incorporated into 14C-labelled, prenylated proteins. Radiolabelled, prenylated proteins can then be detected by autoradiography following electrophoretic separation.
(B) Both alendronate (ALN) and risedronate (RIS) prevent the incorporation of [14C]mevalonate into prenylated proteins in purified rabbit osteoclasts, whereas clodronate (CLO) has
no effect. (C) Purified osteoclasts were metabolically-labelled with [14C]mevalonate in the presence of 1–100 µM zoledronate (ZOL). 1 µM zoledronate inhibits the synthesis of
radiolabelled isoprenoid lipids at the dye-front (arrowhead), but ≥10 µM zoledronate also inhibits prenylation of small GTPases. Reproduced from Coxon et al., J Bone Miner Res
2000; 15: 1467–1476 with permission of the American Society for Bone and Mineral Research. (D) Neonatal rabbits were injected with 10 mg/kg alendronate or clodronate. 24
h later, osteoclasts were purified using immunomagnetic beads and cell lysates were analysed by western blotting for the presence of unprenylated Rap1A. Alendronate (but not
clodronate) treatment in vivo causes the accumulation of unprenylated protein in osteoclasts. The lack of effect in non-osteoclast cells demonstrates that alendronate specifically
affects osteoclasts. Reproduced from Frith et al., Arth Rheum 2001; 44: 2201–2210 with permission of the American College of Rheumatology.
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geranylgeranylation (GGTI-298, an inhibitor of geranylgeranyl trans-
ferase I). Whereas loss of farnesylated proteins in osteoclasts has little
effect, loss of geranylgeranylated proteins causes disruption of actin
rings, inhibits bone resorption and stimulates osteoclast apoptosis [46],
clearly indicating the fundamental importance of geranylgeranylated
small GTPases rather than farnesylated proteins in osteoclasts. This is
supported by the finding that replenishing cells with an isoprenoid lipid
substrate that restores geranylgeranylation can overcome the effects of
N-BPs on osteoclast formation, apoptosis and bone resorption
[27,59,60]. Interestingly, loss of geranylgeranylation of Rac is probably
the cause of the regular inflammatory episodes associated with
mevalonate kinase deficiency. This rare hereditary disorder (encom-
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prenylation, leading to abnormal activation of Rac and increased
caspase-1 activity, thus generating increased levels of mature IL-1β
following minor infections [65].

FPP synthase is the major molecular target in the mevalonate
pathway

Following the recognition in 1998 that N-BPs most likely act by
inhibiting themevalonate pathway and altering protein prenylation, a
flurry of papers [47,66–68] identified FPP synthase as the major
enzyme of the pathway that was inhibited in J774 macrophages and
osteoclasts (Fig. 3), although some N-BPs are also much weaker
inhibitors of other enzymes in the mevalonate pathway, including IPP
isomerase, squalene synthase and GGPP synthase [31,69,70]. More
detailed studies with recombinant human FPP synthase demonstrated
that it is inhibited by nanomolar concentrations of N-BPs [68,71] and
that there is a highly significant correlation between the order of
potency for inhibiting human FPP synthase in vitro and anti-resorptive
potency in vivo. Importantly, minor modifications to the structure and
conformation of the R2 side chain that were known to affect anti-
resorptive potency were shown to affect the ability to inhibit FPP
synthase [68]. These observations have helped explain the relationship
betweenBP structure and anti-resorptive potency, strongly suggesting
that FPP synthase is indeed themajor pharmacologic target of N-BPs in
osteoclasts in vivo. The exact mechanism by which N-BPs inhibit FPP
synthase is reviewed by Dunford et al. in this edition of Bone.

Studies with Dictyostelium slime mould amoebae have provided
further evidence that FPP synthase is themajor target of N-BPs. Aswith
J774 macrophages, the order of potency of N-BPs for inhibiting the
proliferation of Dictyostelium amoebae closely matches the order of
potency for inhibiting bone resorption [10,72,73], indicating that
N-BPs affect the same, ubiquitous molecular target in Dictyostelium as
in mammalian cells. Spontaneous mutant strains of Dictyostelium [74],
aswell as tumour cells cultured in low concentrations of N-BPs [75,76],
are resistant to the growth-inhibitory or cytotoxic effect of the drugs
and have been found to have increased FPP synthase activity.Whether
patients may also acquire resistance to N-BPs or have inter-individual
differences in the response to N-BP therapy, due to mutations or SNPs
in FPP synthase, remains a largely unexplored question. A study of 283
Caucasian women suggested that a SNP (rs2297480) in FPP synthase
may be a genetic marker for bone mineral density (BMD), since
statistically significant differences were found between the C/C or C/A
genotypes at the spine, trochanter, distal radius, and proximal ulna
after adjustment for age and BMI, although there were no significant
differences in bone turnovermarkers [77]. However, an explanation at
the molecular/cellular level for such an effect of FPP synthase on BMD
remains to be provided.

The high degree of evolutionary conservation of this enzyme
explains why N-BPs also inhibit FPP synthase from Dictyostelium [74]
and other eukaryotes such as Leishmania and Trypanosome parasites
[78–81]. The exact mechanism of inhibition of FPP synthase has
become clear through characterisation of the X-ray crystal structure of
FPP synthase and detailed measurements of enzyme kinetics,
indicating that the N-BPs mimic the structure of the enzyme's natural
isoprenoid pyrophosphate substrates GPP/DMAPP and compete for
binding at the GPP/DMAPP substrate binding site of the enzyme.

Although N-BPs can have dramatic anti-tumour effects in vitro and
in some in vivo models of cancer [82], mediated by inhibition of FPP
synthase in tumour cells, macrophages or other tumour-associated
cells [4], the effectiveness of N-BPs as anti-tumour agents in vivo is
likely restricted by their rapid targeting to bone surfaces and hence
low bioavailability to cells other than osteoclasts and monocytes.
Removal of the phosphonate groups of N-BPs would prevent binding
to bone mineral and could increase drug accessibility to other cells,
however it is clear that even subtle modifications to the phosphonate
groups (such as methylation) that reduce binding to bone mineral
also decrease the ability to inhibit protein prenylation [83] since the
phosphonate groups are important for interaction with magnesium
ions in the GPP/DMAPP pocket of FPP synthase [84,85]. Interestingly,
replacement of a phosphonate group with a carboxylate group also
substantially reduces mineral affinity and the ability to inhibit FPP
synthase, but creates compounds that selectively inhibit Rab GGTase
and therefore specifically prevent the prenylation of Rab GTPases
[55,86–88]. As a result, these phosphonocarboxylate drugs disrupt the
osteoclast ruffled border (since maintenance of this membrane
domain is dependent on Rab-regulated vesicular trafficking), but
have no effect on the integrity of the actin ring, since they do not affect
prenylation of Rho family GTPases [55,86]. There is some evidence
that phosphonocarboxylates possess anti-tumour activity in vivo [89],
but this may be limited by the fact that these compounds still target to
bone due to the presence of one phosphonate group. More recently,
an exciting study by Jahnke and colleagues [90] has identified novel,
non-BP inhibitors of FPP synthase that bind to a previously unknown
allosteric site on the enzyme. These inhibitors lack the phosphonate
moieties of N-BPs and hence do not bind to bone mineral, offering the
prospect of new classes of FPP synthase inhibitors that may be of
clinical use as anti-tumour or anti-parasitic agents or in even more
diverse therapeutic applications. For example, inhibition of FPP
synthase via N-BP treatment, in combination with a statin to further
inhibit the mevalonate pathway, was recently found to reduce the
aging symptoms and to increase longevity in a mouse model of
Hutchinson–Gilford progeria syndrome (HGPS), by preventing the
farnesylation or geranylgeranylation and hence abnormal membrane
localisation and function of mutant lamin A in the nucleus of HGPS
cells [91].

Inhibition of FPP synthase causes the accumulation of IPP and the
formation of ApppI

As well as preventing the prenylation of small GTPase proteins,
inhibition of FPP synthase by N-BPs causes accumulation of IPP, the
metabolite immediately upstream of FPP synthase in the mevalonate
pathway (Fig. 3). This accumulation of IPP appears to be the cause of
the acute phase reaction to N-BPs, a common adverse effect involving
fever and “flu-like” symptoms that are transient and usually occur
soon after first intravenous (IV) administration of the drug. It appears
that, after IV infusion, uptake of N-BP by monocytes in peripheral
blood [3] causes inhibition of FPP synthase and rapid accumulation of
IPP [92,93], which is known to be a ligand for the most common
subset of γ,δ-T cells in humans, Vγ9Vδ2 T cells. Although the precise
mechanism bywhich IPP is released or “presented” to these γ,δ-T cells
remains unknown, activation of the γ,δ-T cells causes the release of
TNFα and thereby initiates the pro-inflammatory acute phase
response [94]. The activation of γ,δ-T cells by N-BPs can be completely
overcome in vitro by co-treating cells with statins, which prevent the
accumulation of IPP [92].

The accumulation of IPP in cells that have internalised N-BP, such as
cultured tumour cells, and osteoclasts andmacrophages in vivo [95–97],
leads to the production of a new metabolite, ApppI [98] (Fig. 3).
Similarly, the concurrent accumulation of DMAPP appears to lead to the
formation of ApppD, at an even higher rate than ApppI [99]. The exact
mechanism by which ApppI and ApppD are generated remains
uncertain. Some evidence suggests that aminoacyl-tRNA synthetases,
the same enzymes that metabolise simple BPs, may also be able to
conjugate IPPwith AMP to formApppI [100], although this has not been
confirmed using purified enzymes. However, like the AppCp-type
metabolite of simple N-BPs, ApppI inhibits the mitochondrial ANT and
can cause osteoclast apoptosis [98]. Hence, inhibition of FPP synthase by
N-BPs can cause osteoclast apoptosis (and thereby inhibit bone
resorption) by two routes, inhibition of protein prenylation and
accumulationof ApppI [100], although the othermorphological changes
associated with exposure of osteoclasts to N-BPs (such as loss of the
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ruffled border, disruption of the actin cytoskeleton and altered vesicular
trafficking) are best explained by the effect on protein prenylation.
Conclusions

After 40 years of clinical use, the biochemical and molecular
actions of BPs on osteoclasts are now clear and can be divided into two
distinct mechanisms. Whereas BPs of simple chemical structure are
incorporated into toxic, non-hydrolysable ATP analogues, the more
potent, nitrogen-containing BPs inhibit the enzyme FPP synthase,
thereby disrupting the production of isoprenoid lipids in the
mevalonate pathway, preventing the prenylation of small GTPase
proteins necessary for osteoclast function and causing accumulation
of a toxic, isoprenoid-containing metabolite. Although additional
molecular targets for BPs may exist, these two main mechanisms of
action account for the anti-resorptive effects of these agents on
osteoclasts, as well as for some of the adverse effects of BPs such as the
acute phase response. Further studies are required to fully understand
the (perhaps subtle) effects in vivo of BPs on other cell types such as
osteocytes, monocytes and tumour cells, but these are described in
other reviews in this special edition of Bone.
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